Archive for the ‘Oakland hazards’ Category

Earthquake mitigation at Oakland City Center

18 April 2016

Today is San Francisco Earthquake Day. Just before dawn on this day in 1906, at 5:13 local time (meaning 6:13 daylight time), a rip in the crust off Ocean Beach started tearing its way north and south along the San Andreas fault, setting in motion one of California’s greatest defining events.

At the Oakland City Center and the Clorox building, at 1221 Broadway, you’ll see this odd feature on the ground.

citycentergap

It’s a long steel ribbon that covers a pair of long sawcuts in the pavement about 3 inches apart. Between the cuts, the tile has been pulled out and replaced with a flexible gasket. One edge of the steel ribbon is anchored to the tiles, but the other edge is loose.

That’s a retrofit for big earthquakes. During a moderate-to-major event, say magnitude 5-1/2 or larger, the Clorox building will shimmy back and forth, and so will the buried BART station. Because of their different sizes and dimensions, they won’t move in unison. Without the gasket in the pavement, the tiles in the rigid pavement will buckle and shatter and fly in all directions, leaving one more mess to clean up that will probably fester for years.

The gasket promises to prevent that. If you’re here when the next sizeable earthquake hits, and you have the presence of mind (not guaranteed!), watch it work. The free side of the steel ribbon should slide over the ground while the gasket cushions the two sides of the cut beneath it.

This won’t prevent all damage, and it may not matter at during the biggest quakes we can get (magnitude 7 and maybe 7.5), but for the much more abundant moderate events it will save us some grief.

The sulfur problem of the Leona rhyolite

4 April 2016

The Leona “rhyolite” is one of Oakland’s most intriguing rock formations. We have other volcanic rocks here — the true lava flows at the Sibley Volcanic Regional Preserve — but the Leona is ten times older and has a very different story.

Leona-green-Knowland

I put the word rhyolite in quotes because the rock isn’t technically rhyolite, although geologists used to think it was. Rhyolite is a type of lava, generally light-colored and very viscous, the kind of stuff you see in the Inyo Domes south of Mono Lake, or at Lassen Peak.

Instead, the Leona was originally a thick pile of mostly volcanic ash, part of a chain of volcanoes out in the deep Pacific Ocean. Volcanic ash is a glassy material. Later it was invaded by actual lava flows and hydrothermal features like the “black smokers” of the deep sea floor. These things cooked the ash beds into hard rocks as the glassy ash broke down (devitrified). The result looks somewhat like rhyolite, but it’s formally called quartz keratophyre on the geologic map. Cliff Hopson, a leading expert in this part of California geology, described it in 2008 (GSA Special Paper 438) as the top part of the Coast Range ophiolite, “mostly altered, devitrified volcaniclastic sedimentary rocks” of the “volcanopelagic remnant,” a mixture of ash and deep-sea ooze.

The hydrothermal activity, in particular, added sulfur into the mix in the form of the mineral pyrite. The mineral oxidizes upon exposure to air and rainwater, yielding sulfuric acid and iron oxides.

Over the years on this blog, I’ve documented acidic waters draining the Leona “rhyolite” almost everywhere it’s exposed. The most notorious place is the former sulfur mine at the top of McDonell Avenue, where “yellowboy” oxides stain the streambed below.

sulfurmine-2016

Would-be pyrite miners have poked their picks into the Leona all over the place. I recently located a long-abandoned adit — a horizontal tunnel — left behind by one of those guys.

Leona-adit

You don’t want to go here. The adit is about 10 meters long, smells funny and is lined with a powdery deposit signifying a steady decay. The city ought to seal it, but it’s difficult to find and is well enough left alone, so far.

Nearby are numerous pits with the telltale red-brown linings that develop in the Leona after a few decades of exposure.

leona-pit

Bits of rock below the adit, with the pyrite leached out of them, are very lightweight. Elsewhere I’ve seen this stuff turn to pure clay.

leona-leached-chip

Experience has shown me that the Leona seems to release acid drainage wherever an incision is made in it. Had I read the literature first, I’d’ve known this long ago. In a 1969 report for the U.S. Geological Survey (Map GQ-769), Dorothy Radbruch noted, “Fresh rock contains abundant pyrite in many places. . . . runoff from rhyolite hills [is] very acid and corrodes concrete sewer pipe.

A reconnaissance of San Leandro geology

14 March 2016

San Leandro is a much smaller city than Oakland, but it has its share of interesting rocks and features. ‘Twas a cloudy day when I visited, but the worst day geologizing is better than the best day working. Here’s the geologic map with the photo locations numbered on it.

SLgabbrogeomap

The purple area marked Jgb is underlain by the San Leandro Gabbro, of Jurassic age, a crystalline rock similar to granite that belongs to the Coast Range Ophiolite. It’s about 160 million years old and was once a deep-seated part of the oceanic crust. Unfortunately the color, while it follows the official U.S. government geologic color guidelines for Mesozoic plutonic rocks, makes the map hard to read. The blob of brown marked Jpb represents Jurassic pillow basalt, which I thought would be very interesting to see. And the solid black line down the middle of the map is the Hayward fault — it’s solid black because the fault is very well mapped there.

The San Leandro Rock Quarry has been closed for a few years.

SL-quarry

The land is for sale — 58 acres of it, right on the Hayward fault — but I didn’t feel up to impersonating a possible buyer, so it was off limits. But the view the other way is pretty cool, overlooking the gorge of San Leandro Creek below the Chabot Reservoir dam. It’s the biggest canyon between Niles Canyon and Wildcat Canyon and pretty intimidating.

SLCreekcanyon

A little ways west on Lake Chabot Road, where it meets Astor Drive, is a saddle in the hillside where the Hayward fault crosses the road. A steep gulch descends to the north along the fault trace. To the south, the Bay-O-Vista Swim and Tennis Club has nestled on the fault unscathed for almost 60 years.

SL-bayovistaclub

We’ll visit the fault on the other side of the club. But first, the gabbro! It’s exposed in various places in the Bay-o-Vista neighborhood, where it’s mostly shattered from being next to the fault for millions of years.

SLGabbro-exposure

Gabbro is made up mostly of dark pyroxene and light plagioclase feldspar. Like granite, it likes to weather into decent soil. The excavations of residential areas are helpful in bringing it into view. And up close, this gabbro is pretty.

SLGabbro-specimen

Studies of this area using airborne gravity meters and magnetic instruments suggest that this gabbro extends well north and south of here in a big slab about 3 kilometers thick lying between the Hayward and Chabot faults, tilted almost straight up and down. This figure is from a 2003 study led by Dave Ponce of the U.S. Geological Survey.

SLgabbroprofile

In Oakland, the gabbro shows up in stringers and blobs along the fault as far north as Chimes Creek. I’ve picked up pieces on Eastmont hill by the reservoir. But the geophysical study suggests that it underlies a much larger area as far as Merritt College, beneath the surface rocks.

The gabbro is strong enough that it bends the Hayward fault slightly off course. But during the 1997-98 El Niño, a big hunk of hillside gave way just below the place where I shot the outcrop. Two homes were lost.

SLslideface

The top of the slide displays some pretty rotten stone.

SLslidescarp

Farther south, Fairmont Road swings around the county juvenile justice center past the Hayward fault. This is looking north from there up the fault trace.

SL-faultvalley

Our active faults grind up the rocks so fine that they’re easily eroded into gulches, gullies and valleys, and that’s what this one is. It last ruptured on October 21, 1868, so any trace of that is long gone. It takes careful trenching studies to find it. We’ll have to wait until the next big one to see where it decides to rip up the ground.